Kernel-function Based Algorithms for Semidefinite Optimization

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel-function Based Algorithms for Semidefinite Optimization

Recently, Y.Q. Bai, M. El Ghami and C. Roos [3] introduced a new class of so-called eligible kernel functions which are defined by some simple conditions. The authors designed primal-dual interiorpoint methods for linear optimization (LO) based on eligible kernel functions and simplified the analysis of these methods considerably. In this paper we consider the semidefinite optimization (SDO) pr...

متن کامل

Kernel Function Based Interior–point Algorithms for Semidefinite Optimization

We propose a primal-dual interior-point algorithm for semidefinite optimization(SDO) based on a class of kernel functions which are both eligible and self-regular. New search directions and proximity measures are defined based on these functions. We show that the algorithm has O( √ n log ε ) and O( √ n logn log ε ) complexity results for smalland large-update methods, respectively. These are th...

متن کامل

A path following interior-point algorithm for semidefinite optimization problem based on new kernel function

In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

a path following interior-point algorithm for semidefinite optimization problem based on new kernel function

in this paper, we deal to obtain some new complexity results for solving semidefinite optimization (sdo) problem by interior-point methods (ipms). we define a new proximity function for the sdo by a new kernel function. furthermore we formulate an algorithm for a primal dual interior-point method (ipm) for the sdo by using the proximity function and give its complexity analysis, and then we sho...

متن کامل

Primal-Dual Interior-Point Algorithms for Semidefinite Optimization Based on a Simple Kernel Function

Interior-point methods (IPMs) for semidefinite optimization (SDO) have been studied intensively, due to their polynomial complexity and practical efficiency. Recently, J.Peng et al. [14, 15] introduced so-called self-regular kernel (and barrier) functions and designed primal-dual interior-point algorithms based on self-regular proximity for linear optimization (LO) problems. They have also exte...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: RAIRO - Operations Research

سال: 2009

ISSN: 0399-0559,1290-3868

DOI: 10.1051/ro/2009011